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We consider the displacement of a ‘formation fluid’ by an ‘injection fluid’ along a
temperature gradient in a reactive porous rock. We assume that the formation fluid
is in chemical equilibrium initially and we allow the injection fluid to differ from
the formation fluid both in temperature and in chemical composition. Two types of
reaction front can form as the injection fluid propagates into the rock: (i) ‘depletion
fronts’ caused by any undersaturation of the injection fluid and (ii) ‘thermal reaction
fronts’ caused by any difference in temperature between the injection fluid and the
trailing edge of the formation fluid. As flow proceeds the temperature gradient in
the formation fluid is advected at the thermal propagation speed, but the fluid itself
moves more quickly at the interstitial fluid speed. This difference in speed causes
formation fluid to be carried out of chemical equilibrium and a ‘gradient reaction’
results. The subsequent dissolution or precipitation alters the amount of reactant
present on the rock and this alters the propagation speed of any subsequent depletion
front. We derive the six dimensionless parameters controlling the evolution of the
system and calculate approximate solution profiles for the limit of fast kinetics and
negligible diffusion. These solutions give insight into the physical processes governing
the solution and are compared with numerical solutions of the full equations. The
behaviour of the system is strongly influenced by three dimensionless parameters in
particular. The parameters JC and JT quantify the chemical and thermal difference
between the fluids at the point of injection and they control the relative positions of
the depletion and thermal fronts at short times. On the other hand, the parameter
α quantifies the background thermal gradient and controls the relative positions of
the fronts at long times. In the cases where the depletion front moves from one side
of the thermal front to the other, we derive approximate expressions for the time at
which this ‘crossover’ occurs.

1. Introduction
In naturally occurring rocks, the geothermal temperature gradient may give

rise to vertical temperature changes as large as 10 ◦Ckm−1. Since the equilibrium
concentration of mineral species in solution varies with temperature, it follows that
the pore fluid can be stratified both in temperature and in chemical composition.
This chemical stratification can lead to significant redistribution of minerals when
the interstitial fluid is displaced by fluid flow. In particular, displacement of the fluid
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Figure 1. Sketches showing how the ‘thermal’ and chemical profiles would be advected
downstream in the absence of diffusion and chemical reactions. The equilibrium concentration
profile CE (which is a proxy for temperature and shown in grey) is advected at speed Γ u
while the chemical profile C (shown in black) is advected at speed u/φ. (The corresponding
dimensionless speeds, defined in § 2, are 1 and (1+V ) respectively.) After a time t the different
speeds of advection have separated the two profiles. Chemical reactions would tend to drive
dissolution or precipitation reactions where C <CE or C > CE . Diffusion would tend to smooth
out the sharp fronts shown here. (a) A ‘positive’ gradient in equilibrium concentration, in which
CE increases downstream; (b) as (a) but in the case of a ‘negative’ gradient (CE decreases
downstream).

across the original isotherms results in under-saturation or super-saturation of the
fluid, and associated dissolution or precipitation of mineral species (Phillips 1991).

As an example, vertical displacement of fluid in geothermal systems may be driven
by buoyant convection associated with anomalous heat sources. More generally,
displacement flows can develop in geological settings if a permeable rock is invaded by
fluid from a source at higher pressure. Such flows may result from tectonic fracturing –
which might connect one permeable layer to a deeper layer at higher pressure – or
sea-level changes causing saline water to displace fresh water in coastal permeable
rocks. In an industrial context, displacement flows often arise in hydrocarbon and
geothermal reservoirs when water is injected into a reservoir in order to displace the
formation fluid towards production wells. In the Earth’s mantle, reactions between
upwelling melt and the surrounding porous matrix are caused by the melt flowing
along an adiabatic temperature gradient (Aharonov et al. 1995).

A simple model for ‘gradient reactions’ – in which fluid is displaced along a
temperature gradient – can be constructed as follows. In a rock with porosity φ and
uniform temperature gradient G, a uniform flow with transport speed u along the
gradient advects the isotherms at speed Γ u where Γ is the ratio of the specific heat of
the fluid to that of the bulk (Jupp & Woods 2003). Assuming for simplicity that the
equilibrium concentration of the fluid is a linear function of temperature (ce = a+bT )
it follows that the equilibrium concentration of the fluid at any fixed point in the rock
evolves with time at a rate bGΓ u. Meanwhile the fluid moves through the pore spaces
at the interstitial speed u/φ. The difference between the rate of advective transport of
concentration along the temperature gradient, bGu/φ, and the local rate of change
in concentration associated with the advection of the temperature field, bGΓ u, leads
to reaction at a rate proportional to bGu(1/φ − Γ ). This reaction may be one of
precipitation or dissolution, depending on the sign of bG (figure 1). We explore this
model for gradient reactions in more detail in § 3.
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In addition to gradient reactions, any chemical or thermal differences between
the injection and formation fluids can lead to the formation of travelling ‘fronts’.
We define the ‘fluid front’ to be the boundary between the injection and formation
fluids. This is manifested as a jump in the chemical composition and moves at the
interstitial fluid speed u/φ. In contrast, the thermal difference between the injection
and formation fluids defines a ‘thermal front’ which moves at the lesser speed Γ u.
The physical reason for this is that thermal signals travel through both the pore
space and the rock, whereas chemical signals travel through the pore space alone.
It follows that individual parcels of fluid travel faster than the thermal front and
are able to cross it. These fluid parcels may experience a change in equilibrium
concentration when crossing the thermal front leading to precipitation or dissolution
reactions. The ‘thermal front’ can therefore induce a ‘thermal reaction front’ across
which the concentration of the fluid changes. If the rock becomes depleted in reactant,
however, reactions cease and the thermal reaction front can become decoupled from
the thermal front to be advected downstream at the interstitial fluid velocity. If
the injection fluid is undersaturated at the point of injection it will dissolve solid
reactant there until the rock is fully depleted and a ‘depletion front’ forms. Upstream
of a depletion front, the solid concentration is zero and no further reactions are
possible.

The aim of this work is to explore how depletion and thermal reaction fronts
are influenced by gradient reactions. The distinction between depletion fronts and
thermal reaction fronts in porous rocks is discussed in detail by Jupp & Woods (2003).
Our aim here is to complement that work by considering the influence of a gradient
reaction associated with the flow.

The remainder of this paper is organized as follows. In § 2, we develop a formal
mathematical model for the system and derive the dimensionless parameters which
govern its evolution. We also review the chemical balance relations which govern the
speed at which reaction fronts move. In § 3 we derive an analytical solution for the
gradient reaction in the displaced formation fluid. In § 4 we consider the effect of
a gradient reaction on the propagation of reaction fronts. In particular, we derive
approximate solution profiles valid in the limit of ‘fast kinetics’ in which the advective
supply of chemical reactant is rate limiting. These approximate solution profiles
are compared with numerical solutions of the full governing equations. Finally, we
give an estimate of the timescales over which different physical processes occur.

2. The governing equations
A full derivation of the governing equations used here is given by Jupp &

Woods (2003). The equations in the present paper differ in the presence of a
background temperature gradient in the initial conditions and in the chosen non-
dimensionalization.

The evolution of temperature is controlled by an advection–diffusion equation of
the form

∂T

∂t
+ Γ u

∂T

∂x
= DT

∂2T

∂x2
, (2.1)

where DT is the thermal diffusivity of the fluid-filled porous medium and Γ is the
ratio of the volumetric heat capacity of the fluid to that of the the fluid-filled medium.
For simplicity, we assume that the equilibrium concentration of the dissolved mineral
species is a linear function of temperature, so that ce = a + bT where a and b

are constants. The case b > 0 corresponds to a ‘prograde’ mineral whose solubility
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increases as temperature increases, while the case b < 0 corresponds to a ‘retrograde’
mineral whose solubility decreases as temperature increases. The assumption that
dce ∝ ±dT allows us to treat equilibrium concentration as a proxy for temperature.
Consequently, all thermal effects are described in terms of the attendant change in
equilibrium concentration. The first governing equation comes from rewriting the
thermal balance of equation (2.1) in terms of the equilibrium concentration:

∂ce

∂t
+ Γ u

∂ce

∂x
= DT

∂2ce

∂x2
, (2.2)

and we refer to the front which develops in the equilibrium concentration at x = Γ ut

as the ‘thermal front’. Equation (2.2) is subject to the boundary condition

ce(0, t) = cie, t > 0 (2.3)

and the initial condition

ce(x, 0) = cf + bGx (2.4)

where G is the initial thermal gradient.
The second governing equation controls the evolution of the fluid concentration c

(in units of moles of reactant in solution per unit volume of fluid) and is an advection–
diffusion–reaction equation of the form

∂c

∂t
+

(
u

φ

)
∂c

∂x
= DC

∂2c

∂x2
+ k

(
s

sf

)
(ce − c), (2.5)

where k is the reaction rate, s is the concentration of undissolved reactant and sf is
a constant defined below. Equation (2.5) is subject to the boundary condition

c(0, t) = ci, t > 0 (2.6)

and the initial condition

c(x, 0) = ce(x, 0) = cf + bGx. (2.7)

The chemical species whose fluid concentration is c can also exist in the solid state
on the grains of the porous medium. The amount of reactant in the solid state can
then be expressed by a ‘solid concentration’ s(x, t) in units of moles of solid reactant
per unit volume of solid. Conservation of reactant implies that the third and final
governing equation controls the evolution of the solid concentration s:

∂s

∂t
= −k

φ

ν (1 − φ)

(
s

sf

)
(ce − c) (2.8)

where ν is a stoichiometric factor expressing the idea that ν moles of solid reactant may
be required to react fully with each mole of fluid reactant. We suppose for simplicity
that reactant in the solid state is uniformly distributed initially with concentration sf

so that equation (2.8) has the initial condition:

s(x, 0) = sf . (2.9)

2.1. Dimensionless form of the governing equations

It is useful at this point to recast the governing equations (2.2), (2.5) and (2.8) in
dimensionless form. The thermal front migrates with speed Γ u, and so we introduce
the dimensionless coordinates

ξ =
k

Γ u
x, τ = kt. (2.10)
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We also define the dimensionless concentrations

C(ξ, τ ) =
φ(c − ci)

(1 − φ)νsf

, CE(ξ, τ ) =
φ(ce − ci)

(1 − φ)νsf

, S(ξ, τ ) =
s

sf

. (2.11)

It follows from equations (2.2), (2.5) and (2.8) that the evolution of the system is
governed by the dimensionless system of equations

∂CE

∂τ
+ ∂CE

∂ξ
= P

∂2CE

∂ξ 2 ,

∂C
∂τ

+ (1 + V )∂C
∂ξ

= εP ∂2C
∂ξ 2 + S (CE − C),

∂S
∂τ

= −S (CE − C),




(2.12)

with initial conditions

CE(ξ, 0) = C(ξ, 0) = JC +
α

V
ξ for ξ � 0, (2.13)

S(ξ, 0) = 1 for ξ � 0, (2.14)

and boundary conditions

CE(0, τ ) = JC − JT and C(0, τ ) = 0 for τ > 0. (2.15)

The six dimensionless parameters controlling the evolution of the system are therefore

V =
1 − φΓ

φΓ
, P = kDT

Γ 2u2 , JT =
φ(cf − cie)
(1 − φ)νsf

,

JC =
φ(cf − ci)
(1 − φ)νsf

, ε = DC

DT
, α =

bGu (1 − φΓ )
(1 − φ)νsf k

.


 (2.16)

The parameter V is a measure of the relative speeds at which thermal and chemical
signals are advected, since V = (u/φ − Γ u)/Γ u. The parameter P can be interpreted
as a dimensionless reaction rate. The governing equations show that chemical reaction
occurs over a timescale 1/k, while the thermal front becomes established on a timescale
DT /Γ 2u2. This is the value of time t at which the thermal front has been advected
a distance Γ ut comparable to the distance

√
DT t that it has spread under dispersion

and diffusion. Thus, P is the ratio of the timescale of formation of the thermal front
(DT /Γ 2u2) to the timescale over which reactions occur (1/k). Alternatively, P can be
interpreted as the ratio of a Damköhler number Da = kL/Γ u to a Péclet number
Pe = Γ uL/DT , where L is a lengthscale. The parameter JT is a measure of the
difference in temperature between the injection and formation fluids, expressed in
terms of the attendant difference in equilibrium concentration. We shall show in § 5.2
that JT controls the initial speed of the thermal reaction front. The parameter JC

is a measure of the difference in concentration between the injection and formation
fluids. We shall show in § 5.1 that JC controls the initial speed of the depletion front.
Throughout this paper, we restrict attention to cases where the incoming fluid is
either saturated JC = JT or undersaturated JC > JT . We do not consider the case of
oversaturated injection fluid (JC < JT ) in which precipitation at the point of injection
would tend to clog the pores of the rock. The parameter ε is the ratio of the chemical
and thermal diffusivities and is therefore a reciprocal Lewis number. The parameter α

is a dimensionless measure of the background thermal gradient and can be interpreted
as the ratio of two rates. The quantity bG (u/φ − Γ u) is the rate of change of the
equilibrium concentration ce experienced by formation fluid as it travels at speed u/φ

along the temperature gradient G which is advected at speed Γ u. On the other hand,
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Figure 2. Chemical balance at a front (which may be a depletion front or a thermal reaction
front). In the ξ, τ reference frame the front lies at ξf and moves at dimensionless speed
Vf , while particles of fluid move at dimensionless speed (1 + V ). The dimensionless distance
between the front at ξf and the fluid front at (1 + V )τ is denoted by ζf .

(1−φ)νsf k/φ is a measure of the rate at which the injection fluid concentration c can
change under the influence of chemical reactions alone. The parameter α is the ratio
of these two rates and so a small value of α indicates that the reaction rate is large
compared to the rate of advective disequilibrium. We note for completeness that the
special case α = 0 is considered by Jupp & Woods (2003) in terms of the alternative
dimensionless parameters λ = JC − JT and β = JC/(JC − JT ).

2.2. Chemical balance at reaction fronts

We now consider chemical balance at thermal reaction fronts and depletion fronts.
In either case, the chemical balance at the front can be expressed in terms of the
dimensionless variables defined in the previous subsection (figure 2). For a front at
ξ = ξf moving at speed Vf =dξf /dτ , fluid particles move at a dimensionless speed
1+V − Vf relative to the front and so there is a net molar flux (1+V − Vf )(�C)f of
dissolved reactant past the front. Similarly, there is a net molar flux Vf (�S)f of solid
reactant past the front. Chemical balance implies that these fluxes must be equal and
so we deduce that the jump in solid concentration across the front (�S)f and the
jump in fluid concentration across the front (�C)f must be linked by the equation

Vf (�S)f = (1 + V − Vf )(�C)f (2.17)

and so the speed of the front Vf is given by

dξf

dτ
= Vf =

1 + V

1 + (�S)f /(�C)f
(2.18)
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Later in this paper we shall make use of the variable ζf = (1+V )τ−ξf representing the
dimensionless distance between a front at ξ = ξf and the fluid front at ξ = (1 + V )τ .
It follows that

dζf

dτ
= 1 + V − Vf =

1 + V

1 + (�C)f /(�S)f
(2.19)

3. The gradient reaction solution in the formation fluid
The fluid front at ξ = (1 + V )τ separates the formation fluid from the injection

fluid. Diffusion tends to smooth the jump in concentration between the two fluids
but has a negligible effect sufficiently far away from the front. Thus, an approximate
solution within the displaced formation fluid (neglecting diffusive effects) is

CE = JC + (α/V ) (ξ − τ ),

C = JC + (α/V ) (ξ − τ ) − (f (τ ) + ατ − 1),

S = f (τ ),


 (3.1)

where the governing equations (2.12) imply that the function f (τ ) satisfies

df

dτ
+ ατf + f (f − 1) = 0, f (0) = 1. (3.2)

The solution of equation (3.2) can be calculated analytically and takes distinct forms
depending on whether the gradient parameter α is zero, positive, or negative (see the
Appendix). Graphs of this solution are plotted in figure 3, for a range of values of the
gradient parameter α. Later in this paper, we shall make use of the function f (τ ) and
its definite integral F (τ ) =

∫ τ

0
f (t) dt (see the Appendix). Although exact expressions

for f (τ ) and F (τ ) can be derived (equations (A 1) and (A 2)) they are complex and
rather difficult to interpret. We shall therefore derive simple approximations for f (τ )
and F (τ ) in the limits |α| � 1 and |α| � 1.

3.1. Approximate gradient reaction solutions when |α| � 1 or |α| � 1

When the thermal gradient is very small or very large (in the sense that |α| � 1 or
|α| � 1) the exact solution of equation (A 1) can be replaced by simple approximations
derived from series expansions (see the Appendix).

If the dimensionless gradient is large (|α| � 1) then the gradient drives a reaction
in which the reaction rate k is rate limiting. It can then be shown that

|α| � 1:




f (τ ) ≈ exp
(
− 1

2
ατ 2

)
,

F (τ ) ≈




√
π/(−2α)erfi

(√
− 1

2
ατ

)
, α � −1

√
π/(2α)erf

(√
1
2
ατ

)
, α � 1,

(3.3)

where

erf x =
2√
π

∫ x

0

exp − y2 dy and erfi x =
2√
π

∫ x

0

exp y2 dy.

The solutions of equation (3.3) are illustrated in figure 3(b). When α � 1, the gradient
drives a dissolution reaction and so the downstream solid concentration is depleted
to zero in a dimensionless time of order 1/

√
α. On the other hand, when α � −1
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Figure 3. The behaviour of the function f (τ ) (thin lines), representing the downstream value
of the dimensionless solid concentration S. In each plot, f (τ ) is shown for a range of values
of α drawn from the set {±0.01, ±0.03, ±0.1, ±0.3, . . . , ±100} with values of α labelling the
lines. (a) f (τ ) against dimensionless time τ ; (b) f (τ ) against the rescaled time coordinate√

|α|τ , showing that f (τ ) ≈ exp(−ατ 2/2) (thick lines) when |α| � 1; (c) f (τ ) against the
rescaled time coordinate |α|τ showing that f (τ ) ≈ 1 − ατ (thick lines) when τ < 1/α and
|α| � 1. When α < 0 this linear behaviour is valid for all positive times, but when α > 0 we
have f (τ ) ≈ 0 for τ > 1/α.

the gradient drives a precipitation reaction and the downstream solid concentration
increases for all time.

If the dimensionless gradient is small (|α| � 1) then the gradient drives a reaction
in which the advective supply of reactant is rate limiting. When this is a dissolution
reaction (0 < α � 1) we have

0 < α � 1:




f (τ ) ≈
{

1 − ατ if τ � 1/α

0 if τ � 1/α,

F (τ ) ≈
{

τ − 1
2
ατ 2 if τ � 1/α

1/2α if τ � 1/α,

(3.4)
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and so the downstream solid concentration is depleted linearly to zero in a
dimensionless time of order 1/α (see figure 3c). This corresponds to a dimensional
time of order φbG(u/φ − Γ u)/(1− φ)νsf and so the time for downstream depletion is
independent of the reaction rate k. This is precisely what we might expect since this
is a regime in which the reaction rate is not rate limiting.

When |α| � 1 and the gradient drives a precipitation reaction, the dimensionless
downstream solid concentration f (τ ) is no longer depleted to zero but grows
indefinitely. In this case we obtain

−1 � α < 0:

{
f (τ ) ≈ 1 − ατ

F (τ ) ≈ τ − 1
2
ατ 2.

(3.5)

For the remainder of this paper we restrict attention to the limit of fast kinetics
(|α| � 1) in which the approximations of equations (3.4) or (3.5) apply.

3.2. The influence of the gradient reaction

We showed in the previous subsection that the gradient reaction solution in the
formation fluid is given by equation (3.1). We now consider how this gradient reaction
affects the intruding injection fluid. Ultimately, we shall consider two regimes defined
by the relative positions of the depletion front and the thermal front. First, however,
we illustrate the nature of the solution with some simple examples of numerical
solutions of the equations. The solutions were calculated using the PDECOL solver
package of Madsen & Sincovec (1979) as discussed by Hopkins (1992). This solver
uses the method of lines, and a finite element collocation procedure is used for
the spatial discretization. The effects of numerical dispersion were minimized in the
simulations by the choice of a fine spatial mesh.

The simplest case of all is that in which there is no depletion front and no thermal
front, so that JT = JC = 0 (figure 4a, b). There is no depletion front because the
incoming fluid is saturated and there is no thermal front because the injection fluid
has the same temperature as the trailing edge of the formation fluid. At dimensionless
time τ , the temperature of the injection fluid has been advected a dimensionless
distance τ and so there is a change in the thermal gradient at ξ = τ . Downstream of
ξ = τ the different advective speeds of thermal and chemical signals mean that fluid is
constantly carried out of chemical equilibrium and a gradient reaction results. When
α > 0 the gradient drives a depletion reaction (figure 4a) and when α < 0 it drives a
precipitation reaction (figure 4b). Upstream of ξ = τ the injection fluid is saturated so
no reactions occur. This means that the passage of the gradient reaction is recorded
on the rock as an altered value of the solid concentration S.

A depletion front can be added to the simple situations described above by allowing
the incoming fluid to be undersaturated, so that JC > JT (figure 4c, d). The solution
at the point of injection ξ = 0 then takes the simple form

CE(0, τ ) = (JC − JT ), C(0, τ ) = 0, S(0, τ ) = exp (−(JC − JT )τ ). (3.6)

It follows that the rock at the point of injection is depleted of solid reactant over
a dimensionless timescale of order 1/(JC − JT ) and so this can be interpreted as
the dimensionless timescale over which the depletion front forms. Once the depletion
front has formed it propagates into the medium at a speed governed by the amount
of solid reactant that it must dissolve to return to equilibrium according to the
chemical balance of equation (2.18). It follows that the speed of the depletion front
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Figure 4. Solution profiles illustrating some simple cases. Numerical solutions of the full
governing equations are shown (dotted lines) alongside approximate profiles (solid lines)
calculated using the methods described in § 4. Values of the dimensionless parameters are
shown in each case, including the dimensionless time after injection τ . (a) The simplest case,
in which there is no thermal jump (JT = 0) and the injection fluid is saturated (JC = JT ). Here
α > 0 and so the gradient drives a dissolution reaction; (b) as (a) but with α < 0 so that
the gradient drives a precipitation reaction; (c) a more complicated case, in which a depletion
front forms because the injection fluid is undersaturated (JC > JT ); (d ) as (c) but with α < 0.

is influenced by the value of the solid concentration S that it encounters. The solid
concentration is the legacy of the passage of the gradient reaction. When α > 0
the gradient drives a dissolution reaction and so the solid concentration decreases
downstream. The depletion front therefore accelerates over time as it must dissolve
an ever decreasing amount of solid reactant. On the other hand, when α < 0 the
gradient reaction deposits solid reactant on the rock and so the solid concentration
increases downstream. This means that the depletion front decelerates over time as it
must dissolve an ever increasing amount of solid reactant.

A thermal front will develop if there is a difference in temperature between the
injection fluid and the trailing edge of the formation fluid, so that JT �= 0 (figure 5a, b).
This thermal front tends to drive a dissolution reaction if JT > 0 and a precipitation
reaction if JT < 0, but otherwise the situation is similar to those already discussed.
Figure 5(a) illustrates a typical situation in which the depletion front lies downstream
of the thermal front (‘Regime 1’). The thermal front is unable to drive a reaction
because it lies in a region which has already been depleted of solid reactant by the
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Figure 5. As figure 4, but showing solution profiles for the general case in which a gradient
reaction, a depletion front and a thermal front are all present. (a) A typical solution in Regime 1
(depletion front downstream of thermal front); (b) a typical solution in Regime 2 (thermal
front downstream of depletion front).

ξ < τ τ < ξ

CE JC − JT JC + (α/V )(ξ − τ )

Table 1. Solution profile for the equilibrium concentration in the limit of negligible diffusion.

depletion front. On the other hand, figure 5(b) illustrates a typical situation in which
the thermal front lies downstream of the depletion front (‘Regime 2’). In this case
the thermal front is able to drive a reaction and so a thermal reaction front exists in
addition to the depletion front.

4. Approximate solution profiles in the limit of fast reactions
and negligible diffusion

In the previous section, we presented numerical solutions of the governing equations
in order to illustrate how gradient reactions, depletion fronts and thermal fronts
interact. We now derive approximate solution profiles in order to demonstrate the
physical balances governing these interactions. For simplicity, we consider the limit in
which diffusion is negligible and the reaction rate is not rate limiting for the gradient
reaction (|α| � 1). The approximate profile of the equilibrium concentration CE is
therefore given by the profile in table 1.

4.1. Regime 1: Depletion front lies downstream of thermal front

First, we consider Regime 1 in which the depletion front lies downstream of the
thermal front (e.g. figure 5a). The gradient reaction solution of equation (3.1) applies
approximately as far upstream as the depletion front, since the reaction rate is large
(|α| � 1). It follows that the approximate solution profiles in table 2 apply and so
the jumps in fluid and solid concentration across the depletion front are

(�C)d ≈ JC + (α/V )(ξd − τ ) − (f (τ ) + ατ − 1),

(�S)d ≈ f (τ ).

}
(4.1)
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ξ < ξd ξd < ξ

C 0 JC + (α/V )(ξ − τ ) − (f (τ ) + ατ − 1)

S 0 f (τ )

Table 2. Regime 1: approximate solution profiles for the fluid and solid concentrations when
the depletion front lies downstream of the thermal front and the reaction rate is not rate
limiting (|α| � 1).

It then follows from equation (2.19) that ζd = (1 + V )τ − ξd evolves according to the
equation

dζd

dτ
≈ (1 + V )f (τ )

1 + JC − αζd/V
. (4.2)

In summary, when the system is in Regime 1, the approximate position of the
depletion front can be calculated by integrating equation (4.2). The approximate
profiles are given by tables 1 and 2, and are compared with full numerical solutions
in figure 5(a).

4.2. Regime 2: Thermal front downstream of depletion front

We now consider Regime 2 in which the thermal front lies downstream of the
depletion front. In this case the gradient reaction solution of equation (3.1) applies
(approximately) as far upstream as the thermal reaction front (figure 5b). The solid
concentration downstream of the thermal reaction front is f (τ ). At the thermal
reaction front, the jumps in fluid and solid concentration are denoted by (�C)t and
(�S)t . The solid concentration S must always be non-negative and so f (τ ) constitutes
an upper bound for (�S)t . The speed of the thermal reaction front is governed by
chemical balance (equation (2.18)) and so the thermal reaction front can be ‘coupled’
to the thermal front only if (�S)t = V (�C)t . We deduce that

(�C)t ≈ JT +(α/V )(ξt − τ ) − (f (τ ) + ατ − 1),

(�S)t ≈ min (f (τ ), V (�C)t ).

}
(4.3)

In other words, if there is sufficient solid reactant downstream of the front then
(�S)t = V (�C)t and the thermal reaction front is coupled to the thermal front
(ξt = τ ). On the other hand, if there is insufficient solid reactant downstream of the
front then (�S)t = f (τ ) and the thermal reaction front is decoupled from the thermal
front (ξt > τ ).

We define the ‘dimensionless decoupling time’ τdc to be the least positive value of
τ for which f (τ ) = V (�C)t (if such a solution exists). This is the time at which
the thermal reaction front becomes decoupled from the thermal front because of an
insufficient supply of solid reactant.

We deduce that the approximate solution profiles given in table 3 apply for Regime 2
and so the jumps in fluid and solid concentration at the depletion front are

(�C)d ≈ JC − JT ,

(�S)d ≈
{

f (ξd) − V (�C)t if ξd � τdc

0 if ξd > τdc .


 (4.4)

The speeds of the thermal reaction front can now be calculated using equations
(4.3) and (4.4). It follows from equation (2.19) that ζt = (1+V )τ −ξt evolves according
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ξ < ξd ξd < ξ < ξt ξt < ξ

C 0 JC − JT JC + (α/V )(ξ − τ ) − (f (τ ) + ατ − 1)

S 0

{
f (ξ ) − V (�C)t , ξ < τdc

0, ξ � τdc

f (τ )

Table 3. Regime 2: approximate solution profiles for the fluid and solid concentrations when
the thermal front lies downstream of the depletion front and the reaction rate is not rate
limiting (|α| � 1). The dimensionless decoupling time τdc is defined in the text.

to the equation

dζt

dτ
≈

{
V if τ � τdc

(1 + V )f (τ )
1 + JT − αζt/V

if τ > τdc .
(4.5)

In the limit of fast reactions considered here, |α| � 1, (�C)t ≈ JT for τ < τdc . It
then follows from equation (2.18) that the speed of the depletion front is given by

dξd

dτ
≈

{
(JC − JT )(1 + V )

(JC − (1 + V )JT ) + f (ξd)
if ξd � τdc

1 + V if ξd > τdc .
(4.6)

In summary, when the system is in Regime 2, the approximate position of the
thermal reaction front can be calculated by integrating equation (4.5) and the
approximate position of the depletion front can be calculated by integrating equation
(4.6). The approximate solution profiles are given by tables 1 and 3, and are compared
with full numerical solutions in figure 5(b).

5. Evolution of the system over time
In the previous section we defined the two solution regimes for the system according

to the relative positions of the thermal and depletion fronts. The sign of the gradient
parameter α determines whether the gradient drives a dissolution reaction or a
precipitation reaction and hence whether the depletion front accelerates or decelerates
over time. It is therefore possible for the system start in one regime but to move into
a different regime for sufficiently long times.

5.1. System begins in Regime 1

If the system begins in Regime 1 then the approximate solution of table 2 applies
at short times (figure 6a). Equation (4.1) shows that (�C)d → JC and (�S)d → 1 as
τ → 0 and so we deduce from equation (2.18) that

dξd

dτ
→ (1 + V )

1 + 1/JC

as τ → 0 in Regime 1. (5.1)

It follows that the system cannot be in Regime 1 at short times if JC < 1/V . The
position of the depletion front while the system remains in Regime 1 can be calculated
approximately by integrating equation (4.2) with initial condition ζd(0) = 0:

ζd ≈ V (1 + JC)

α

[
1 −

√
1 − 2α(1 + V )F (τ )

V (1 + JC)2

]
. (5.2)

We now consider whether the system can cross over into Regime 2.
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Figure 6. A typical solution when the system remains in Regime 1 for all time. Labelling
as in figure 4.

.

If the gradient is small and positive (0 < α � 1), it follows from equation (3.4) that

ζd ≈




V (1 + JC)
α

[
1 −

√
1 − α(1 + V )(2τ − ατ 2)

V (1 + JC)2

]
for τ < 1/α

V (1 + JC)
α

[
1 −

√
1 − (1 + V )

V (1 + JC)2

]
for τ > 1/α.

(5.3)

This shows that, for dimensionless times greater than 1/α, the rock in the downstream
region is fully depleted by the gradient reaction. The depletion front then moves at
dimensionless speed (1 + V ) and so ζd is constant.

On the other hand, if the gradient is small and negative (−1 � α < 0) then the
gradient drives a deposition reaction and the depletion front decelerates, eventually
crossing to the upstream side of the thermal front at the ‘crossover time’ τc. This is
the time for which ζd(τc) = V τc in equation (5.2). It follows (using equation (3.5)) that

τc ≈ 2(1 − V JC)

α
(5.4)

when the system crosses from Regime 1 to Regime 2. A typical solution is shown in
figure 7.

5.2. System begins in Regime 2

If the system begins in Regime 2, then the solution of table 3 and equations (4.5)
and (4.6) applies at short times. Equation (4.3) shows that (�C)t → JT and (�S)t →
min (1, V JT ) as τ → 0. It follows from equation (2.18) that

dξt

dτ
→ max

(
1,

(1 + V )

1 + 1/JT

)
as τ → 0. (5.5)

Since we consider only cases in which the injection fluid is undersaturated (JT � JC),
it follows that the system begins in Regime 2 if JC < 1/V .

If the gradient is small and negative (−1 � α < 0) it drives a deposition reaction.
The depletion front then decelerates over time and so the system remains in Regime 2
for all subsequent times. An example of this behaviour is shown in figure 8.
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Figure 7. As figure 6, but illustrating the case where the system begins in Regime 1
but moves into Regime 2 at long times.
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Figure 8. As figure 6, but illustrating the case where there system remains in Regime 2
at all times.

On the other hand, if the gradient is small and positive (0 < α � 1) it drives
a dissolution reaction. The depletion front then accelerates over time and so the
system eventually crosses into Regime 1 at the crossover time τc. The position of the
depletion front, while the system remains in Regime 2, can be calculated approximately
by integrating equation (4.6) with initial condition ξd(0) = 0. This gives

F (ξd) + (JC − (1 + V )JT )ξd ≈ (JC − JT )(1 + V )τ (5.6)

and so the crossover time from Regime 2 to Regime 1 (for which ξd(τc) = τc) is

τc ≈ 2(1 − V JC)

α
. (5.7)

We note that this expression has the same form as the crossover time from Regime 1
to Regime 2 (equation (5.4)). Equations (4.3) and (3.4) can be used to deduce that the
decoupling time is

τdc ≈ 1 − V JT

α
. (5.8)

A typical solution in which the system moves from Regime 2 into Regime 1 is shown
in figure 9.

A summary of the timescales inherent in the problem is given in table 4.
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Figure 9. As figure 6, but illustrating the case where the system begins in Regime 2 but
moves into Regime 1 at long times.

Process Dimensionless timescale

Chemical equilibration 1
Formation of thermal front P

Formation of fluid front εP/(1 + V )2

Formation of depletion front 1/(JC − JT )
Depletion by gradient reaction (if 0 < α � 1) 1/α
Decoupling of thermal reaction front (if 0 < α � 1) τdc ≈ (1 − V JT )/α
Crossover of depletion front and thermal front (if |α| � 1) τc ≈ 2(1 − V JC)/α

Table 4. The approximate dimensionless timescales associated with the evolution of the
system, expressed in terms of the governing dimensionless parameters.

6. Discussion and conclusions
We have considered the influence of a streamwise thermal gradient on a

displacement flow in a reactive porous medium. We derived an analytical solution for
the gradient reaction when the initial distribution of solid reactant is uniform and
investigated the effect of this gradient reaction on the speeds and relative positions
of thermal reaction fronts and depletion fronts.

Approximate solution profiles for the limit of no diffusion and fast kinetics were
derived (tables 1, 2, 3; figures 6, 7, 8 and 9). These profiles give insight into the
fundamental physics and are consistent with the results of numerical simulations.
They also yield approximate expressions for the crossover time τc and the decoupling
time τdc in the limit of fast kinetics (|α| � 1) (table 4).

When 0 < α � 1 the gradient drives a dissolution reaction. For sufficiently large
times (τ � 1/α), the downstream rock is totally depleted of reactant by the gradient
reaction. It follows that no further reactions can occur and any frontal structure that
has developed will simply advected downstream at dimensionless speed (1 + V ).

We derived the dimensionless parameters which govern the nature of the solution.
In particular we showed how the solution depends on the three parameters α, JC

and JT . The parameter α is a measure of the rate of advective supply to the gradient
reaction in relation to the rate of chemical kinetics. The parameter JC controls the
position of the depletion front at short times τ � τc. If JC < 1/V the depletion front
lies upstream of the thermal front at short times, while for JC > 1/V the depletion
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Figure 10. Diagrams illustrating how the parameters JC and JT control the regime of the
system at short times, while the parameter α controls the regime of the system at long times.

front lies downstream of the thermal front at short times. The parameter α controls
the evolution of the speed of the depletion front, and hence whether it will ‘cross
over’ from one side of the thermal front to the other. When α = 0, the speed of the
depletion front is constant (Jupp & Woods 2003). When α > 0 the depletion front
accelerates over time and when α < 0 the depletion front decelerates over time. This
behaviour is summarized in figure 10.

In a real geological flow regime, we might expect fluid flow with transport velocity
of order 10−8–10−7 m s−1 and a background geothermal gradient G in the range
0.001–0.01 Km−1. If the reaction rate k had a value in the range 10−4–10−6 s−1 (so
that the reaction time k−1 ranged from a few hours to a few days), then we should
expect that α ∼ 10−4–10−2 and so the limit of fast kinetics investigated here would
apply. For a rock with uniform mineral concentration at the start of the flow, the
downstream concentration of mineral in the rock would decrease linearly with time
after the start of the flow, as a result of the gradient reaction. This causes the thermal
reaction front to decouple from the thermal front and migrate ahead of it. At long
times, the thermal reaction front would lag a fixed distance behind the leading edge
of the injected liquid. It follows that flow of this sort might lead to large zones of
undersaturated water in the region between the thermal and thermal reaction fronts.
The advance of the thermal reaction front leads to a more rapid depletion of the
mineral content of the rock than would occur under the influence of the gradient
reaction alone.

There may be a significant dynamic impact associated with the two different fronts.
In particular, the change in temperature across the thermal front may lead to changes
in fluid viscosity, porosity and permeability across the thermal reaction front. If the
fronts lead to a decrease in mobility, then the flow across the front may become
unstable, as with the acid etching instability (Hinch & Bhatt 1990). In a two- or
three-dimensional flow, these fronts may also change the large-scale structure of the
flow (Menand, Raw & Woods 2003). Furthermore, in time-dependent flows, such as
those produced by sea-level change, reacting fluids may produce up to three zones of
permeability and fluid within the rock, naturally leading to the formation of bands
of mineralization and stratification of the connate water.

This work has been supported by the BP Institute and the Newton Trust,
Cambridge.
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Appendix. Exact solution for the gradient reaction
The substitution u(τ ) = 1/f (τ ) can be used to derive an analytical solution of

equation (3.2). This solution is

f (τ ) =



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(
−α

2

(
τ − 1

α

)2
)

√
π

2α

[
erf

(√
α

2

(
τ − 1

α

))
− erf
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√
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(
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) , α > 0

(A 1)
where

erf x =
2√
π

∫ x

0

exp −y2 dy and erfi x =
2√
π

∫ x

0

exp y2 dy.

By definition, F (τ ) =
∫ τ

0
f (t) dt , and so equation (A 1) can be integrated to give

F (τ ) =




log
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(A 2)

The following series can be truncated to give asymptotic expressions in the limit
x → 0 (Abramovitz & Stegun 1964):

exp (x) =

∞∑
k=0

xk

k!
, erf (x) =

2√
π

∞∑
k=0

(−1)k x2k+1

(2k + 1) k!
,

erfi (x) =
2√
π

∞∑
k=0

x2k+1

(2k + 1) k!
.

(A 3)

The following series can be truncated to give asymptotic expressions in the limit
x → ∞ (Abramovitz & Stegun 1964):

erf (x) = 1 − exp(−x2)

x
√

π

∞∑
k=0

(−1)k (2k)!

k! (2x)2k
, erfi (x) =

exp(x2)

x
√

π

∞∑
k=0

(2k)!

k! (2x)2k
. (A 4)
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